
x T  1/3 = C. (25) 

The solution (25) corresponds to the steady state temperature distribution in a rod. 

9. Let f(T) = T -4/a Then the operator X 2 + X 5 = (i + x 2) 3/ax - 3xT 8/aT generates 
the invariants �9 and (i + xa)T 2/3 and the invariant solution has the form (i + xa)T 2/3 = v(~). 
The substitution v(z) in (3) gives 

V ' =  2~randy 2 =  4~ + C, 

o r  

(1 + x~)2T ~m = 4~ + C. (26) 

Finally we note that in view of the complexity of the calculations of v(~) in the struc- 
ture of the invariant solutions corresponding to some of the operators listed in (4) through 
(7), we do not give all of the results here. However, it was shown in examples 1-9 that the 
kinematic description of the process of unsteady heat conduction in terms of (3) can be 
used to determine the function v(p), which can be a very difficult problem using the "tra- 
ditional" approach based on equation (i). 

Secondly, we note that the invariant solutions obtained here, which are related to the 
intermediate asymptotic solutions of [6-8], contain important information on the behavior 
of the general solutions of boundary-value problems for the nonlinear heat-conduction equa- 
tion, both for the case of fixed boundaries (or moving boundaries with a known form of the 
motion) as well as for the case where the motion of the boundary in time is found from an 
additional condition (the Stefan condition) in the case of a phase transition of the material. 
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FINITE-DIFFERENCE METHOD FOR SOLVING A ONE-DIMENSIONAL 

NONSTATIONARY PROBLEM OF RADIATIVE -CONDUCTIVE HEAT TRANSFER 

Yu. V. Lipovtsev and O. N. Tret'yakova UDC 536.33 

An algorithm and examples of the solution of problems of complex heat trans- 
fer are given. 

In this work, an effective method is offered for solving one-dimensional nonstationary 
boundary-value problems of radiative-conductive heat transfer with the exact equations for 
radiative transfer [i]. In this paper, results are presented on further development of works 
[2, 3], and examples of calculations and comparisons with known results of other authors are 
given. 

We consider a flat layer of an emitting, absorbing, and anisotropically scattering medium 
with optically smooth or diffusely reflecting partially transparent surfaces. Initially, a 
nonuniformly heated layer is placed in the medium, the temperature and the coefficient of heat 
emission of which change according to a given law. Under the condition of azimuthal sym- 
metry, we write the equations of radiative transfer in the form [i] 

S. Ordzhonikidze Moscow Aviation Institute. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 51, No. 5, pp, 840-847, November, 1986. Original article submitted August 12, 
1985. 
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1 

al + ~zl+ + fS i" lP (~', ~) I + (~d) + q (u', p) I-  (~')] dp '  + b, - -  . ' - 

Vt Ox 2 o 
(i) 

0I- I 
~I- + t - -  = - -  [q (p', 9) I + (~') + p (9', ~) I-  (~')1 dp' § b. 

-- ~ Ox 2 b 

Equations (i) are stationary, and time enters them as a parameter. The temperature de- 
pendence of the thermal radiation properties of the material is assumed to be given for 
each wavelength of the radiation. 

For optically smooth surfaces x = 0 and x = s the boundary conditions are of the form 

. . . .  &) 4 (~), I+(0, u) P,2I-(O, ~)-i-n~(l + ' 

I-  (l, ~) = R j  + (l, p) + n" (I - -  R~) I~- (p').  
(2)  

The coefficient of reflection R 2 is calculated from the Fresnel formulas, where R 2 
all angles exceeding Brewster's angle. 

For diffuse reflection at the surfaces, the conditions at the boundaries are 

= 1 for 

1 

I + (0, ,u) - 2r2 j" I -  (0, ,u') ~'dff' + Ie  (p') 
0 

1 

r r ~r I-(1,  ~ ) = 2 r , . . [  I +(l,  p ) , u d l  + I j - ( p ' ) .  
0 

The  e q u a t i o n s  o f  h e a t  c o h d u c t i o n  f o r  a p l a n e  l a y e r  a r e  

aT a (K(x, t} a T )  c9 at aT T ,  + 2a !" d% .[ x [(I+ § I - )  - -  2u}-B] d~d~. 
o:lim) o 

Boundary conditions for Eq. (4) are 

- -  K I l l  OT __ 2~.~/12 f d~ [ $ + ( I t  ~ -  S4)  LLd~ -;- l131,g {T  e - -  T) ,  
ax {&} 

(3)  

(~) 

(5) 
I 

I n d i c e s  + and  - r e f e r  t o  t h e  s u r f a c e s  x = 0 and  x = s  r e s p e c t i v e l y .  The c o e f f i c i e n t s  s  
t a k e  on t h e  v a l u e s  0 o r  1 and  f o r m  a m a t r i x  o f  t h e  b o u n d a r y  c o n d i t i o n s ,  w h i c h  a l l o w  u s  t o  
take into account different versions of heat transfer on the surfaces of a layer. 

Thus, mathematically speaking, solution of the generalized boundary-value problem of 
radiative-conductive heat transfer is reduced to solution of a coupled system of two in- 
tegrodifferential equations (I), (4), with given boundary conditions (2), (5) or (3), (5). 
In order to find solutions, we use the method of finite differences. We introduce the de- 
sign grid, and as nodes we select the points with coordinates 

x ~ = ( i - - 1 ) A x ( i =  1, 2 . . . . .  t ) ;  p ~ = ( m - - l ) A p ( m = l ,  2 . . . . .  M); 

X j = ( i - - 1 ) A X ( i = I ,  2 . . . . .  ]); & = ( n - - 1 ) A t ( n =  l, 2 . . . . .  N). 
We designate the desired functions at the nodes of the grid 

li~ m. n : I•  (xi, ~m, LJ, &); T~ = T (xi, In). 

At the initial moment of time t = 0 (n = 1), we find the field of the intensities of 
+ 

radiation If,m, n for all the values Xj from the given distribution of temperatures T(x) ~ 

by using a numerical method of solving the first boundary-value problem [Eqs. (i), boundary 
conditions (2) or (3)]. For solving the coupled system of equations (i), (4) for the fol- 
lowing moment of time t = ~t, we use an iterative approach. In order to find the temperature 

+ 
field, we use the solution I-i,m,n, related to the preceding moment of time, as a zero appro- 
ximation to the functions I• i m ~+i, entering the integral term of Eq. (4). From the deter- 

nT• mined temperatures T i , we find the first approximation to I-i,m,n+ I. Then we repeat the 
iteration until the given condition of convergence of the computational process for temper- 
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TABLE i. Spatial-Angular Distribution of Intensities of Ra- 
diation at b = I, n = I, Ie + = I e- = 0, ~ = 0, ~s = 1 

N o .  ' 

1,0000 
0,9808 
0,9239 
0,8315 
0,7071 
0,5556 
0,3827 
0,1951 
0,0000 

I -  I -  I + NO. ~ 

2 1,0000 
0,9659 
0,8660 
0,7071 
0,5000 
0,2588 
0,0000 

0,630[0,392 
0,637 0,398 
0,65910,416 
0,69710,450 
0,75410,504 
0,832]0,590 
0,924]0,725 
0,993~01918 
1,ooo I 1,ooo 

0,392 0,630 
0,39810,637 
0,41610,659 
0,45010,697 
0,50410,754 
0,59010,832 
O,725]O,924 
0,918 0,993 
1,000 1,000 

Note. Results of the authors, 
No. 2. 

~art No. i ; 

i +  o 

0,632 
0,644 
0,684 
0,756 
0,864 
0,979 
1,000 

x=l/2 I' x=l 
1- 1 + I+ 

0,392 0,392 0,632 
0,404 0,40410,644 
0,438 0,43810,684 
0,506 0,50610,756 
0,632 0,632]0,864 
0,855 0,855 0,979 
1,000 1,000 il,O00 

from work [8], part 

atures and intensities of radiation is not satisfied. The described sequence of operations 
is repeated for each subsequent moment of time. 

For solving the problem of radiative heat transfer at the moment of time tn, we replace 
the integrals by finite sums for each wavelength %i using one of the quadrature formulas, 
and we write Eqs. (i) for all the node points ~m of the angular coordinate: 

~ O~-" -- ~ "~ (pmhl~ + qmul;) hh sin 0,, + b, 

k=~ (6) 
M 

0I~ = ~I~ ~ ~ (qo,hI~ + pmhl; )hh  sinOh-- b. 
o---2- - T  

I n  t he  g i ven  c a l c u l a t i o n s ,  t he  Simpson fo rmu la  was used. I t  was assumed t h a t  M = 9, and 
L = 101. 

We i n t r o d u c e  N - d i m e n s i o n a l  co l umn-vec to r s  r ~ w i t h  t he  components Im +, I m- and r ~', 
the components of which are the corresponding derivatives of the intensities. We write 
the obtained differential boundary-value problem (6), (2) or (6), (3) in the vector-matrix 
form 

C~'=--~+P~+Q~+B, C~'=~--Q~--P~--B, (7) 

where C, P, and Q are square matrices of coefficients u, p, q; and B is the vector with 
components b. 

The boundary conditions (2), (3) are now written in the form 

( 0 ) = R ~ ( 0 ) + g ~ ,  ~ ( 0 = R ~ ( 0 + g , .  (8)  

In t h i s  c a s e ,  t he  boundary c o n d i t i o n s  (2)  in t he  form (8)  co r r e spond  to  the  d i agona l  ma t r ix  R, 
the diagonal elements of which are the coefficients of the internal reflection from the sur- 
face for the given values of the angles. The boundary conditions (3) correspond to the 
square matrix R, obtained by multiplying the column with the elements r 2 by the row of the 
quadrature coefficients with the weighting coefficient U. 

In order to solve the obtained differential boundary-value problem (7), (8), we apply 
the method of finite differences 

+[AxB~+,, C (~Fi+ 1 - -  1gl) = ~hxqt~ - -  AxQ(p~ --  AxPIFi - -  AxB+, 

XFL = R(PL + g2, i---- 1, 2 . . . . .  L - -  1. 

(9) 

The inner equations of system (9) are written on a two-point template, the first of them 
being related to the right point, and the second, to the left poins which provides for com, 
patibility between the differential equations and the boundary conditions, and the solvabil- 
ity of the system as a whole. 

Allowing for the form of the first boundary condition, we reduce system (9) (without 
the second boundary condition) to the form 
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o: 

0,: 

q o t ~ ~ _ _ v _ _ - - - - - 7 ~ _ . _ _  
oo=~S n: ! 

0 2 # ~L 

~ z .  -- - o,s .o:a ,7~: 
3 I . - - - -  

I [ , I i! I t ' f 8  

2 4, ~L 0 2 4, ~T. 

Fig. i Fig. 2 
Fig. i. The dependence of r d on as for isotropic scattering with 
one-sided irradiation of a nonemitting layer: i) numerical solu- 
tion of the exact equations for radiation transfer; 2) two-flow so- 
lution; 3) modified method of mean flows. 

Fig. 2. The dependence of r d on ~s for isotropic scattering with 
one-sided irradiation of a nonemitting layer with optically smooth 
partially transparent surfaces, I e = const. 

~i = Gi~i + v~, ~ i  = H i ' i + 1  + wi, (10)  

where G i and H i are square (M • M) matrices, vi, w i, are M-dimensional vectors, for the de- 
termination of which the following recursive relations are found: 

Hi = ( S - -  AxQGi)-IC, wi = ( S - -  AxQGi)-IAx (Bi + Qvi), 

Gi+l = S-I(CGiH~ + AxQ), vi+l = S-I(CGiw~ § Cvi + AxBi+~), (11)  

S = aAxE § C - - A x P ,  

where  E i s  t h e  u n i t  m a t r i x ,  G~ = R 2, v~ = g~. 

The first iteration of computations, the direct pivotal method, consists in determining 
the matrix coefficients of system (i0) based on recursive equations (ii) for i = i, 2 ..... 
L -i. The iteration of the reverse pivotal method begins from computing the vector ~L from 
the second boundary condition 

~L = (E - -  R2GL) -~ (g~ + R2vL): (12)  
Then for i = L -i, L -2,..., 1 from system (I0), we determine all the vectors ~i, ~i" Ul- 
timately, for each moment of time and for each wavelength, the distribution of intensities 
of radiation is found in the layer according to the linear and angular coordinates. From 
the determined distributions of intensities, any integral characteristics of the radiation 
are easily determined. In particular, the value of the density of the radiative heat flow, 
required for solving the second boundary-value problem, is computed. 

In order to solve the boundary-value problem of heat conduction using the method of 
finite differences, the equations and boundary conditions of which (4), (5) contain functions 
depending on the temperature in a significantly nonlinear way, we linearize the given equa- 
tions according to the Newton-Kantorovich method 

OB I (T "H.-- T"), (13) B(E, T ~ + I ) = B ( L ,  T " ) + ~  r=T~ 

l~(x,  $, Z, t~+,)= I•  ~, )~, t .)+---~--[t=t At. (14 )  

From the linearized system of equations, we determine the desired temperatures by using 
the pivotal method. At each moment of time, we refine iteratively the obtained values, as 
described above. 

The proposed method for solving the problem of radiative-conductive heat transfer allows 

us to determine the field of intensities of radiation and the field of temperatures in the 
layer under conditions of unsteady heat transfer. 

Most results for problems of the given type are obtained with the use of the simplified 
mathematical models [4, 5]. 
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TABLE 2. The Dependence of r d on ~s ~ and n for 
I e = const 

rzl 

F 

1,0 

0,05 l 3,2 
0 , 5  t 0 , 7 5  0,5 " 0 , 7 5  

n O) 

1,4 

1,8 

Two-sided irradiation 

0,1 
0,5 
0,9 
1,0 

0,1 
0,5 
0,9 
1,0 

0,1 0,9202 
0,5 0,9534 
0,9 0,9902 
1,0 1,0000 

0,3258 
014004 
0,5780 
0,5688 

0,0804 
0,1235 
0,3312 
0,6199 

0,9202 
0,9534 
0,9902 
1,0000 

0,3256 
0,3995 
0,5764 
0,6669 

0,0803 
0,1231 
0,3305 
0,6194 

of a nonemitting layer, b 

0,9202 
0,9534 
0,9902 
1,0000 

0,3256 
0,3992 
0,5759 
0,6664 

0,0803 
0,1230 
0,3302 
0,6197 

0,0394 
0,1835 
0,6125 
1,0000 

0,0171 
0,0837 
0,3)35 
0,8359 

0,0056 
0,0289 
0,1617 
0,7141 

0,0340 
0,1600 
0,6000 
1,0000 

0,0127 
0,0596 
0,3344 
0,8033 

0,0039 
0,0187 
0,1380 
0,6928 

= 0 

0,0319 
0,1489 
0,5922 
1,0000 

0,0!17 
0,0550 
0,3293 
0,7963 

0,0034 
0,0161 
0,1335 
0,6879 

One-sided irradiation of an emitting layer, b = K 

1,0 

1,4 

0,1 
0,5 
0,9 
1,0 

0,1 
0,5 
0,9 
1,0 

0,0838 
0,0672 
0,0488 
0,0439 

0,0749 
0,1182 
0,2215 
0,2742 

0,0826 
0,0615 
0,0384 
0,0323 

0,0745 
0,1162 
0,2179 
0,2702 

0,0826 
0,0614 
0,0384 
0,0323 

0,0744 
0,1157 
0,2170 
0,2692 

0,9831 
0,9667 
0,8592 
0,7121 

0,2711 
0,271! 
0,4558 
0,6249 

0,9820 
0,9558 
0,8011 
0,6256 

O,.lO0 
0,2700 
0,4050 
0,5524 

0,9818 
i 0,9532 

0,7903 
0,6104 

0,2670 
0,2670 

[ 0,3907 
0,5382 

A distinguishing characteristic of the given algorithm is the fact that it is based on 
the use of the exact equations for the radiative transfer; this allows one to use it for 
estimating the accuracy of the approximate methods. In addition, as distinct from the two- 
flow schemes, the result of the solution of the problem of radiative transfer is the distri- 
bution of intensities of radiation in a medium with random scattering. This enables one to 
find any integral characteristics of the radiation and to examine the influence of scatter- 
ing on their magnitudes. 

In the problem of radiative-conductive heat transfer, the basic difficulty is in solving 
the first boundary-value problem (i), (2) or (i), (3), while the methods for solving the 
problem of heat conductivity are known, therefore, we will illustrate the potentialities of 
the above-described method with examples of investigation of radiative transfer. 

In work [6], an analytic solution was obtained for a number of problems of radiative 
transfer in a half-space of an isotropically scattering medium by the method of Case [7], 
and this solution was compared with the numerical one. For example, for one-sided irradia- 
tion of the nonemitting half-space at n = 1 from the diffusely radiating source, the follow- 
ing expression was obtained for the dimensionless spatial density of the outgoing monochro- 
matic radiation: 

P - ( 0 ) =  21~ (Fl--~+m--1). 

It is believed that the integral characteristics for the radiation of a layer and of the half- 
space differ only slightly at as > 3 for all the values of m and n = i. 

In work [8], the angular distribution of the intensities of the radiation is found in 
the layer of an emitting, absorbing, and isotropically scattering medium when n = 1 and there 
is no external radiation. The conducted comparison (see Table I) confirms the agreement of 
the results obtained. 
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For one-sided irradiation by a diffusely emitting source I e = const of a nonemitting 
layer b = 0, n = i, a comparison of the results is conducted for calculating the hemi- 
spherical reflectivity, obtained by a numerical solution of the exact equations of the ra- 
diative transfer, with the solution, found with the use of the two-flow approximation [6], 
and with the approximate solution obtained by the modified method of the mean flows, obtained 
by the authors of works [9, i0]. This comparison allows one to judge the accuracy of the ap- 
proximation methods mentioned above (Fig. i). 

In Fig. 2, the relation is shown between r d and ~s at n > i (analogous results are not 
encountered in the literature). From an analysis of the graphs (see Fig. 2), it follows that 
the integral radiation characteristics of a layer tend to the corresponding characteristics 
of the half-space at as > 3 :for all values of ~ and n ~ I. This conclusion holds also for 
anisotropic scattering (Table 2). 

We consider the influence of anisotropy of scattering on the hemispherical reflectivity 
of a layer 

f d  

2a f - - ( I - - R 2 ) I - ( O ,  v)vd~ 
rt 2 
1 

0 

In order to allow for anisotropy of scattering, the indicatrix of the spatial scattering 
was expanded in a series in Legendre polynomials with three terms being retained. Two char- 
acteristics of the indicatrix of scattering were introduced: F, the fraction of radiation 
scattered forward by particles, and ~*, the smoothness: 

F - -  1 l 1 2 .I ?(~~176 ~* I o 

0 0 

Three types of the indicatrix are considered, isotropic scattering (F = 0.5, 6" = 0.33), 
linearly anisotropic (F = 0.75, 6" = 0.39), maximum extension forward of the indicatrix 
(F = 0.75, 6" = 0.43). 

In Table 2, results of calculating r d of a layer of the anisotropically scattering me- 
dium are given for two-sided external irradiation of a nonemitting layer and for one-sided 
irradiation with allowance for the intrinsic radiation of the material. 

In work [Ii], it was assumed that r d of a layer depends slightly on 6" and is deter- 
mined basically by the parameter F; this is confirmed by calculations given in [9] and in 
our calculations for n = 1 for one-sided external irradiation of a nonemitting layer. The 
assumption that r d of a layer depends only on the fraction F of radiation scattered forward 
can be extended to cover media having coefficients of refraction different from unity. How- 
ever, from an analysis of the data from Table 2 it follows that the inaccuracy of such an 
approach increases with increase in the refractive index and optical depth. 

At small as the influence of scattering anisotropy on the value is unimportant. There- 
fore, we can consider the scattering as isotropic and use simpler mathematical models for 
calculations. 

The algorithm for solving the problem of radiative-conductive heat transfer in a similar 
exact treatment is given in [12]; however, the results of the solution are not given so it 
is not possible to perform a comparison. 

NOTATION 

Te, ambient temperature; he, heat-transfer coefficient; I +, I-, intensities of the 
beams making acute angles with the internal normals to the surfaces x = 0 and x = i; 6', e, 
angles characterizing the direction of the incident and scattered beams; # = cos 8; U' = 
cos e; Ie, intensity of external radiation; a = K + 6, ~, 6, spectral absorption and scatter- 
ing coefficients; p, q, integrals over the azimuthal angle from the scattering indicatrix 
Y(~0), U0 =c~ 8 o = 8' - 8; b, internal sources of spatial radiation; rl, r 2, spectral 
coefficients of diffusive reflection from the outer and inner surfaces of the boundaries of 
the layer; RI, R2, coefficients of mirror reflection from the outer and inner sumfaces of 
the boundaries of the layer; c~ specific heat capacity; p, density; k, coefficient of thermal 
conductivity; n, relative refractive index of the medium; hk, coefficients of the quadrature 
formula; ~, spectral albedo; g, emissivity. 
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